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The complex tetracyclic carbon skeleton of colombiasin A
is conveniently accessed through an enantioselective
intermolecular Diels–Alder–sulfoxide elimination–intra-
molecular Diels–Alder (DA–E–IMDA) sequence.

The tetracyclic core of the recently reported diterpene, colom-
biasin A, consists of an unprecedented dodecahydro-5a,8b-
butanoacenaphthylene ring system bearing several oxygen and
methyl substituents.1–3 Our interest in this natural product
stems from the notion that it might be readily accessed via
a tandem enantioselective Diels–Alder–elimination–intra-
molecular Diels–Alder (DA–E–IMDA) sequence (Scheme
1). § 4–6 Furthermore, this DA–E–IMDA sequence may have
additional applications, for example, in diversity-orientated
synthesis based on structurally complex, natural product-like
templates.7 The sulfoxy group in 1 is the key component of our
proposed approach to colombiasin A. It acts as a multi-
functional substituent that controls both the regio and facial
selectivity of the DA reaction and then eliminates to generate
the dienophile for the IMDA (Scheme 1).5 Herein, we report
our initial investigations of this approach, in particular, the
validation of the proposed enantioselective DA–E–IMDA
sequence.

Two double-dienes 4 and 5, each containing a two-carbon
linker, were prepared via a concise synthetic pathway (Scheme
2). The common intermediate, deca-3,7-diene-2,9-dione (3), was
prepared from 2,5-dimethoxytetrahydrofuran (2) as described
by Klimko and Singleton.8 Both carbonyls in 3 were methyl-
enated using excess Wittig reagent to give the symmetrical
double-diene 2,9-dimethyl-1,3,7,9-decatetraene (4) in a low but
useful yield (44%). Monosilylation of 3 was achieved in a rea-
sonable yield (52%, based on recovered starting material) and
the product (not shown) mono-methylenated in high yield to
give the unsymmetrical double-diene 5 (84%).

When the naphthoquinone sulfoxide 6 9 (racemic) was reacted
with the symmetrical double-diene 4 the DA reaction and sulf-
oxide elimination were achieved in one-pot, but only a low yield
of the adduct 7 (29%) was obtained (Scheme 3). This low yield
resulted in large part from competitive reduction of 6 to the
dihydroquinone 9, possibly in part by the phenylsulfenic acid
(HOSPh) produced.5f The unsymmetrical double-diene 5
reacted with 6 to give a reasonable yield of the DA adduct 10
(55%). The yield improvement for 10 relative to 7 may result
from the expected increase in DA reaction rate for the silyloxy
substituted diene 5 relative to 4, increasing the amount of DA
adduct 10 produced relative to reduction product 9. Both 7 and
10 were efficiently converted to the IMDA adducts 8 (81%) and
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11 (71%), respectively, upon heating in toluene. A single crystal
X-ray diffraction study of 11 was performed, confirming that
the relative stereochemistry is as predicted for an endo-IMDA
(Fig. 1).10 This relative stereochemistry is also that contained
within colombiasin A.

We next explored the possibility of preparing an enantio-
merically enriched DA–E–IMDA product using unichiral
sulfinylquinone 15. This known material was prepared by a
similar procedure to that described by Carreño et al. (Scheme
4).5g The bromophenol 12 11 was doubly metalated and reacted

Scheme 1 Retrosynthetic analysis of colombiasin A based on a
tandem enantioselective DA–E–IMDA sequence.

Scheme 2 Reagents and conditions: a) HCl(aq); b) Ph3P��CHC(O)CH3;
c) 2 × Ph3P=CH2; d) TBSOTf, Et3N, CH2Cl2 and e) Ph3P��CH2.
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with (SS )-menthyl p-toluenesulfinate 13 to give 14 (53%), which
underwent efficient oxidation to give the sulfinylquinone 15
(90%). Diels–Alder reaction of double-diene 5 with dienophile
15 produced 16 in a reasonble yield (51%), which underwent
the IMDA reaction upon heating to give the adduct 17 in an
excellent yield and enantioselectivity (91% yield, er 94 : 6).12

The major enantiomer of 17 has been tentatively assigned the
absolute stereochemistry shown based on the mnemonic for
asymmetric DA reactions involving sulfinylquinones proposed
by Carreño et. al., involving an endo-approach of 5 to the
sterically less congested face (top-face) of the prefered s-cis
conformation of 15 (as shown).5h The regioselectivty was con-
firmed by X-ray crystallography.13

Whilst it still remains to be seen if this DA–E–IMDA
protocol can be used to synthesise the specific natural product,
colombiasin A (Scheme 1), the capacity of this reaction
sequence to provide convergent access to complex molecular
cores with excellent relative and absolute stereochemical
control should make it an attractive procedure for application

Scheme 3 Reagents and conditions: a) CH2Cl2, �15 �C to 18 �C; b)
toluene, 160 �C (sealed tube).

Fig. 1 Anisotropic displacement ellipsoid plot (50% probability) of a
molecule of 11 derived from a crystallographic study.

to other areas, such as the diversity-orientated synthesis of
natural product-like molecules.
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